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Constrained Control Allocation

Wayne C. Durham*
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

This paper addresses the problem of the allocation of several airplane flight controls to the generation of
specified body-axis moments. The number of controls is greater than the number of moments being controlled,
and the ranges of the controls are constrained to certain limits. They are assumed to be individually linear in their
effect throughout their ranges of motion and independent of one another in their effects. The geometries of the
subset of the constrained controls and of its image in moment space are examined. A direct method of allocating
these several controls is presented that guarantees the maximum possible moment can be generated within the
constraints of the controls. It is shown that no single generalized inverse can yield these maximum moments
everywhere without violating some control constraint. A method is presented for the determination of a gener-
alized inverse that satisfies given specifications which are arbitrary but restricted in number. We then pose and
solve a minimization problem that yields the generalized inverse that best approximates the exact solutions. The
results are illustrated at each step by an example problem involving three controls and two moments.

Introduction

LASSICALLY, airplane flight controls are designed with

the idea of a single controller for each rotational degree
of freedom. That is, elevators usually control pitching mo-
ments, rudders control yawing moments, and ailerons control
rolling moments. With three independent controls and three
moments to be generated, solutions to the control allocation
problem are unique. Usually, the longitudinal control is un-
coupled from the lateral-directional control, which means that
pitching moments may be generated independently of roll-yaw
effects. The coupling of aileron and rudder in roll and yaw
gives rise to a common control allocation problem, namely,
the generation of a rolling moment without yaw, which is
customarily solved by use of a mechanical aileron-rudder in-
terconnect (ARI), or the rolling surface-rudder interconnect
(RSRI) in the F-18.!

Many modern aircraft have more than three independent
moment generators. These additional moment generators may
arise from the freeing of opposing control surfaces to operate
independently of one another. For example, the left and right
horizontal tails may operate independently, each generating
rolling, pitching, and yawing moments. They also arise from
the addition of nontraditional forms of controllers, such as
thrust vectoring, canard control, elevons, etc. We consider
each such controller individually; for example, the left and
right trailing edge flap are separate controls. In advanced, high
performance tactical aircraft {like the high angle-of-attack re-
search vehicle (HARV)], one has potentially 13 or more inde-
pendent moment controllers: horizontal tail, aileron, leading-
edge flap, trailing-edge flap, and rudder, each left and right;
and three thrust-vectoring moment generators. Add spoilers to
this on the leading-edge extensions, vortical lift and side-force
generators, and the number of controls nears 20.

These controls are all constrained to certain limits, deter-
mined by the physical geometry of the control actuators, or
in some cases by aerodynamic considerations. If the control
constraints are not considered, the mathematical solutions to
the allocation of these controls are, in general, infinite. Quite
often, the minimum-norm solution (sometimes employing
weighting based on the limits of the controllers) is used.??
The minimum-norm solution yields minimum control energy,
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which is useful in itself, but it does not yield maximum perfor-
mance (maximum attainable moment, where the moment is
expressed as a vector). It is the purpose of this paper to develop
the tools and insights necessary to allocate these many con-
trollers in a manner that always guarantees the maximum con-
trol-generated moments within the control constraints.

We will view the controls strictly as moment generators,
which loosely translates to angular-acceleration generators.
Thus, we are thinking of maneuvering tasks, as opposed to
flight-path control. The usual methods of solving automatic
control problems, such as output feedback, do not explicitly
specify instantaneous forces and moments for the controls to
generate. On the other hand, the increasingly popular method
of dynamic inversion?? (as well as model-following control, of
which dynamic inversion is a special case) does specify instan-
taneous forces and moments for the controls to generate, after
“‘subtracting out’’ the other aerodynamic and inertial forces.
Therefore, the methods in this paper are offered as a replace-
ment for that last step in dynamic inversion, wherein one
““solves’’ for the control vector.

The results in this paper may also be extended to classical
problem solutions by replacing the many controls of the orig-
inal problem with just three: one each for rolling, pitching,
and yawing moment. The resultant control law may then be
interpreted as commands for each of those three moments,
which provide the input for the control allocation scheme. For
stabilization problems this touch is usually unnecessary, since
small control deflections are normally required for small dis-
turbances, and saturation is not an issue. For large distur-
bances, however, maximum control effort may be required.
Moreover, for stabilization during maneuvering flight, use of
the proper control allocation scheme will result in greater mar-
gins of control power available for stabilization.

It is important to keep in mind that the control allocation
schemes discussed in this paper do not constitute a control law
in themselves. Questions of robustness, handling qualities, and
so on, belong in the control law. Given that the control law has
determined what moments it wants the controls to deliver, we
seeck here to determine how best to apportion the existing
controls to satisfy that requirement.

This paper is organized as follows: A practical sample prob-
lem is introduced. It will be referred to throughout to illustrate
the points being made. The section following the sample de-~
scribes the mathematics of the problem in geometrical terms
and establishes the basis for subsequent discussion. The sub-
sequent section describes in general terms what is required
to solve the problem, and in specific terms how to solve the
problem for low-order (two-moment) problems. The next
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section discusses the role of generalized inverses in the solution
to the problem and presents methods for choosing a general-
ized inverse that satisfies certain requirements. Finally, other
methods of control allocation currently in use are examined
and compared.

Sample Problem

For the purposes of illustration, we consider a two-dimen-
sional space whose coordinates are the body-axis rolling and
yawing moment coefficients C; and C,,. Associated with these
moments we assume three constrained controllers: conven-
tional aileron, operating differentially; horizontal tail, also
operating differentially; and a single conventional rudder.
This problem is low order but not trivial and demonstrates all
of the important features of the more general problem while
allowing two- and three-dimensional figures for illustration.

The control derivatives are taken from the NASA Dryden
““Controls Design Challenge’’ model,* evaluated at M =0.5,
7 =10,000 ft. Note that the derivatives are expressed as per
degree.

B = Croe  Clypr Cl&r:|
C C Cy,

Nsa NSHT r-

_]7.35%10* 7.55x10-* —1.35x107¢ M
T 18.56x10-5 5.13x10-* —1.37x1073
§ aileron éa
u =1 8diff. HT ; ={ 8HT %))
6 rudder or
o) =7
m = = Bu
C,

The control limits are éa = £20 deg, 6HT = +20 deg, and
6r = £30 deg. These are the same as for the Dryden model
trimmed at the indicated flight condition. As a practical mat-
ter, the differential tail limits will vary as the datum, or longi-
tudinal trim position of the symmetric horizontal tail, changes,
but for this example that is not important. Deflections are
positive for left aileron and left differential tail trailing-edge
down (TED), right surface trailing-edge up (TEU). The rudder
is positive trailing-edge left (TEL).

Geometry of Constrained Control Allocation

Problem Statement

We consider an m-dimensional control space u € R™. The
controls are constrained to minimum and maximum values,
defined by the subset Q2

Q= [ € R™|;min <t < Ui may ] CR™ @

The subset of controls that lie on the boundary of @, 4(Q),
are denoted by u*.

u* € a) &)

These controls generate moments through a mapping B onto
n-dimensional moment space through a linear matrix multipli-
cation of u,

B:R™"—R" (6)
Bu=m )

where m > n. B is the control effectiveness matrix with respect
to the moments. The interpretation of our requirement that the
controls be independent is that every n X n partition of B be
nonsingular.

Denote by & the image of @ in R”, #C R". The subset b,
therefore, represents all of the moments that are attainable

within the constraints of the controls. Moments which lie on
the boundary of &, 3(®), are denoted by an asterisk

m* € 3(®) ®
A unit vector in the direction m will be denoted by i,

m

= —
{m|

®

The control allocation problem is defined as follows: given
B, Q, and some desired moment m,, determine the controls
u € Q that generate that moment for the largest possible mag-
nitude of m in the direction #1,. That is, we desire a rule for
allocating the controls that generates the maximum moment in
a given ratio (direction) without exceeding the constraints on
the controls.

In terms of our sample problem, Q is defined by the limits
given, yielding Fig. 1. All of the admissible controls u lie
within or on the figure, and those that lie on its surface are
denoted u*. The moments that are attainable from the con-
strained controls in Fig. 1 are shown in Fig. 2.

Nomenclature

We will adopt the following nomenclature for referring to
a(9).

Vertices are the points generated by placing all m of the
controls at one or the other of their constraining values. Ver-
tices will be numbered according to a binary representation
that reflects which controls are minimum and which are max-
imum, such that a ““0” in the /th significant figure of the
binary number indicates the ith control is a minimum, and a
““1”’ indicates it is at a maximum. Thus, in Fig. 1, the vertex
generated by éa = —20 deg, 6HT = +20 deg, and 6r = + 30
deg is binary 011, or decimal 3, and will be referred to as vertex
3. As a vector from the origin, vertices of © will be denoted by
u¥, where the single subscript i refers to the number of the
vertex.

Edges are lines that connect vertices and that lie on 3(Q).
They are generated by varying only one of the m controls
whereas the remaining m — 1 are at the constraining values
associated with the two connected vertices. Edges will be dis-
tinguished by ij, where i is the from vertex and j is the to
vertex. As vectors, the edges are denoted by #%, and it is clear
that u =u¥—u}and uf; = —uj};. Note that two vertices are
connected by an edge if and only if their binary representations
differ in only one bit.

Facets are plane surface on d(2) that contain two adjacent
edges. Since the two edges are adjacent, they have a common

Fig. 1 Constrained control subset Q.
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Fig.2 Attainable moment subset .

from vertex. As vectors, these edges are u; and u [} , meaning
that three of the vertices of a facet are u}, u}, and ug. All
vectors from u} that lie in the plane of a facet are linear
combinations of u} and ufy, say auf +buli. In order that
these points remain on 3(f2) we must have 0<a =<1 and 0<b
<1. In particular, if  =b =1, then u} +u}, lies on the facet.
But to move along % is equivalent to varying a single control
from one extreme to the other, and similarly for u}; (varying
a different control). Therefore, this new point is itself a vertex,
differing from uf in two of its controls (those that generated
u} and uj,). Thus, facets are rectangles generated by varying
exactly two of the controls, and these two controls are those
that are allowed to vary along its edges. In Fig. 1, each of the
six faces of the ‘‘box’’ are facets.

Since the controls lie in R”, we could continue defining
geometrical aspects of d(R2). But the projection is into R3 (or R?
for our example). Vertices, edges, and facets are all we will
need in R3, and these will be the images of vertices, edges, and
facets from R”.

We modify our nomenclature somewhat in referring to .

The projections of vertices from 3(Q) are called nodes, un-
less they lie on the boundary 8(®), in which case they are called
vertices of d(®). Vertices and nodes of ¢ are numbered to
correspond with the vertices of @ of which they are images. In
Fig. 2, u¥ and uZ of 8(Q) map to nodes m; and my in ®, and
the remaining vertices map to the six vertices (m§, m}, etc.)
of a(®).

Edges of 3(Q) project to either connections in ® (interior) or
to edges of d(®). In Fig. 2, there are six edges and six connec-
tions. The vector notation for edges of 3(®) is analogous to
that used for controls.

Facets of d(Q) project to either faces in ® (interior) or to
facets of 3(®). In our example problem, @ is two dimensional,
so there are no faces or facets. For the somewhat more general
problem of three moments, there will be both faces and facets
in the attainable moment space.

Direct Solution of the Problem: Approach

The methodology we will adopt is as follows: given B,Q
1) determine &, then 2) find its boundary 4(®), and, finally,
3) determine u € © that maps to the points within or on that
boundary.

Determination of ®
This step is straightforward

®={meR"Bu=m,ucQCR" (10)

That is, the set of all attainable moments is B times all the
attainable controls. For the linear problem we have posed, it is

sufficient to map 9(Q) onto moment space, then to rely on the
fact that we have performed a linear transformation of a com-
pact set of points and so must have generated a compact set of
points (see Fig. 2).

Determination of the Boundary d(®)

The boundary of ® is not so easily found. The boundary
d(®) is obviously obtained from 3(2), but it is not simply the
image of 4(Q) since some points of d(Q) are mapped into the
interior of ®. In Fig. 2, the vertices and edges determine the
boundary, whereas the nodes and connections are interior. It
is not generally known a priori which parts of 3(2) map to
(%), and 3(®) must be determined by some other means.

The boundary we seek in this problem is called the convex
hull. The convex hull of a set of points may be determined by
any of several methods.’ These methods begin with an arbi-
trary set of points and extensively use trigonometric relation-
ships to find the convex hull of the set of points. Current
research promises more efficient means of determining the
boundary for the many-control, three-moment problem.
These methods exploit the structure of the subsets and rely on
the a priori knowledge of the connectedness of the nodes. For
the purposes of this paper, we will assume that the boundary
has been found. In our example (Fig. 2), the subset of attain-
able moments is a plane figure whose boundary is easily deter-
mined by inspection.

Determination of «

Given that we have found d(®), we postulate an arbitrary
demand for some desired combination of moments for the
controls to generate. This is a vector in moment space. We
need to know if this vector is within the attainable moment
subset. To do this, we find the intersection of the half-line in
the direction of the desired moment with 3(®), and compare
the length of the desired vector with the distance to this inter-
section. If the desired moment is on the boundary, we find the
controls that generate the point of intersection. If the desired
moment is within the boundary, we will scale down the con-
trols that generate the point of intersection. If the desired
moment is outside the boundary, then no combination of con-
trols can generate it, and we take the controls that generate the
intersection as being the ‘‘best’” we can do.

The required steps are as follows: given d(®) and a desired
moment m,,

1) Determine which edge or facet of 3(®) m, points to. It is
on this edge or facet that the maximum attainable moment in
the desired direction lies. For the sample (two-moment) prob-
lem, we simply note the angles subtended by each edge with
respect to some reference (say, C, =0), find the angle of m,,
and then determine the edge within whose range of angles the
desired moment lies. For the three-moment problem, determi-
nation of the facet to which the desired moment points is
decidedly nontrivial. The problem is complicated by the fact
that the facets appear as parallelograms on the surface of a
three-dimensional figure resembling a mad cubist’s design of a
geodesic dome. Preliminary research into the determination of
the intersection for the three-moment problem has produced a
fast but highly inelegant algorithm for determining the correct
facet. These results will be reported separately.

2) Find the intersection of am,, a >0, with the edge or facet
determined in step 1. This is the maximum attainable moment
in the desired direction. If a =|m,|, the desired moment is
attainable, otherwise not. This is a straightforward linear alge-
bra problem, that of finding the intersection of two lines, or of
a line and a plane.

3) Given the intersection, calculate the controls that gener-
ate that point. The intersection will be the vector sum of an
adjoining vertex and some positive fractional part of either the
vector that describes the edge (two-moment problem) or the
two vectors that define the facet (three-moment problem). The
controls that generate that point are determined by adding the
corresponding control vectors from  in the same ratio.
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4) If a = |my| (from step 2), step 3 yields the desired solu-
tion. If a >|my|, the controls obtained from step 3 may be
scaled down by the factor K =|m,|/a to obtain a solution. If
a <|my| no solution is possible, but the results from step 3
may be used as being the best possible solution. It is only best
in the sense that the control generated moments are in the same
direction as desired, and says nothing about the effect on the
resulting angular accelerations.

Example Problem

In Fig. 2, the boundary is easily seen to be the edges from
vertices 0-2-6-7-5-1-0. All of the points (combinations of mo-
ments) on and within this boundary are attainable by some
combination of controls; no points outside the boundary can
be obtained without violating some control constraint. The
edges that bound the plane figure, therefore, represent the
maximum moments available in any particular direction in
moment space, using any allowable combination of controls.

To illustrate the procedure, we take for our desired moment
C;=4.0x10"2, C,=0. Thus,

1
my = |mylthy = 4.0x 104{0} an

The relevant geometry of this problem is

20 deg
. 2.5750% 102
m1=By20deg (=) 5 9128x10-2 (12
30 deg
20 deg
% 3.3850x 102
mg=B{ 20deg ;= 5.3072 102 (13)
—30 deg
8.1000x 1073
ok % 14
e = M6 = MM {8.2195x10‘2} a4

Figure 3 shows the geometry of this problem.

As for step 1 of our procedure, we note the angle of m* with
the positive C, axis is — 48.5 deg, that of m§ is + 57.5 deg, and
that edge m’ subtends these angles. Our desired moment
has angle zero (between —48.5 and + 57.5 deg), so m7 is the
correct edge.

At the intersection, we have

afm = m> + bm’ (13)
~ * a *
[y _m76]{b} =my (16)

The scalar a is related to K according to K =|m,|/a. The
matrix [, : mJ] must be nonsingular or the desired moment
is parallel to the edge, and we have picked the wrong edge in
step 1. Therefore, we solve for a and b,

al 2.862x 102 amn

b)  (3.544x10°!
The scalar b must lie between 0 and 1 or again we have
picked the wrong edge. We note that for this solution K = 1.4,

and the moment is not attainable (as was obvious from Fig. 3).
Step 3 is then

20 deg
u* =uj +0.354uls = § 20 deg
30 deg
0 deg 20 deg
+0.354< 0 deg = 20 deg (18)
—60 deg 8.76 deg

0.06
[6]
o R
0.04 m
= 6
r/ ’ m’;6
0.02
/ pd
C. 00 / <
1
-0.02 m? ‘y
004d—]
!_ o
-0.06 4=
-0.04 -0.02 0.0 0.02 0.04

G

Fig. 3 Example problem.

This control, an aileron deflection of 20 deg, differential
horizontal tail 20 deg, and rudder 8.76 deg, generates the
maximum amount of rolling moment available with zero yaw-
ing moment. Since K = 1.4, according to step 4 we may either
accept this value or redefine our requirement.

Had we taken for our desired moment C;=1.0x10"2, C,
=0, we would have had K =0.35. In that case, the desired
combination of controls would have been

20 deg 7 deg
u=0.35¢ 20deg = 7 deg 19)
8.76 deg 3.07 deg

We have effectively designed a RSRI in which the aileron
and differential horizontal tail are ganged in a 1:1 ratio for roll
generation. The ratio 20:20:8.76 is the RSRI gearing for this
flight condition, and controls in this combination generate
rolling moments with no yaw.

Role of Generalized Inverses

Implementations of control laws using direct solutions to
the allocation problem are complicated by the requirement to
determine the correct edge or facet for solution. This determi-
nation is fast and easy for the two-moment problem, and is
certainly amenable to real-time implementation. Much more
research is required to determine practical methods for three-
moment and higher order problems. For the time being, a
simpler solution for higher order problems is preferable.

By simpler solutions we are thinking of multiplying the vec-
tor of desired moments by a single matrix and getting the right
controls. In the parlance of linear algebra, this matrix is a
generalized inverse.%’ If the controls are unconstrained there
are -an infinite number of generalized inverses that solve the
problem. The most commonly used of these is the minimum-
norm solution, which is also called the pseudoinverse. The use
of the pseudoinverse, with its simple closed-form expression in
terims of the control effectiveness matrix, so dominates the
literature that it is difficult to find counter examples.

Several methods have been addressed that ‘‘normalize’’ the
control effectiveness matrix prior to applying the pseudoin-
verse calculations.? In its simplest form, this normalization
attempts to make the matrix representative of controls that
have limits of plus and minus one unit, where the units are
consistent with the controllers’ effects on angular accelera-
tions. Although such methods may improve the solution (in
terms of more nearly attaining greater control moments within
the constraints on the controls), it will be shown that no
method can attain the maximum available moment everywhere
without exceeding some control constraints.
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We will present two methods of determining the best gen-
eralized inverse for a specific problem. The first is referred to
as tailoring of the generalized inverse to satisfy requirements
for maximum moment generation in a limited number of spec-
ified directions in moment space. The second method finds the
generalized inverse that minimizes the difference between the
attainable moment subset and that achievable by any general-
ized inverse. With respect to generalized inverses, we have
three questions.

1) Does a generalized inverse solution to the control alloca-
tion problem exist that yields solutions everywhere in ® or on
d(®) without violating constraints?

2) If not, may we select a generalized inverse solution that
satisfies specific requirements?

3) Is there a best generalized inverse, one that yields solu-
tions that approximate 3(®) more closely than any other?

To answer the questions we have posed, we will first exam-
ine how generalized inverse solutions ‘‘fit’’ inside the bound-
ary. The following theorems help define the problem. The
theorems used in this paper are consequences of the linearity of
the problem, and their proofs are omitted. Given the control
allocation problem with Bu =m, u € §, denote by P any gen-
eralized inverse of B that satisfies BP =1, and which yields
controls corresponding to moments according to u =Pm.

Theorems

Theorem 1. Denote by ¥ the subset of d(Q2) that maps to
3(®), and by u’ the vectors in ¥. Then span(¥)=R"™.

P must satisfy u’ =PBu‘'vu’, or [PB—Ilu’ =0 vu'. That
is, the constrained control vectors that map to d(®) must lie in
K [PB —1I1, the null space of [PB —1I]

u' ={ueQN R [PB-I]|Bu ¢ &}

This null space will play an important role in our subsequent
analysis.

Theorem 2. The equation u = Pm can be satisfied exactly at
no more than (m —n)-n arbitrary values of m.

The significance of Theorem 2 is that we can ““anchor’’ the
generalized inverse at no more than (m — n)- n arbitrary points
on the boundary. All of the other points on the boundary that
are satisfied by the generalized inverse do so by virtue of the
next theorem.

Theorem 3. 1f a generalized inverse satisfies

Pmf=ut Pmi =u} (20)
and if
am¥ = B(aut + bu?) @n
then
Pm* = aut + bu} 22)

Theorem 3 has application as follows: If the generalized
inverse is selected to satisfy (m —n)-n arbitrary points on the
boundary, and if there is another point on the boundary
achieved by some linear combination of the controls at the
selected points (e.g., the linear combinations defining the null
space of [PB —11), then the generalized inverse satisfies the
other point as well (i.e., lies in the null space as well).

As further consequences of Theorem 3, if a generalized
inverse satisfies any two points on a given edge, then it satisfies
all points on that edge. If the problem is symmetric (if the
control limits are symmetric about zero deflection) then we
may conclude that if a generalized inverse satisfies a certain
point on the boundary, then points of control (and moment)
symmetry are also satisfied by the generalized inverse.

Null Space

The pseudoinverse is one of a family of generalized inverses
and is the one which yields minimum control energy. It is easily

evaluated as Puipnorm = BT[BBT]~! (Ref. 8). The family of
which this is a special case may be expressed as P = W[{BW]~1,
where W must be selected such that the inverse exists. It ap-
pears from this formulation that the m-n terms in W are
parameters available for selecting a different P. However, the
terms in W are not all independent. We will use a different
characterization of P that has the right number of parameters.’

We proceed as follows: partition B (rearranging if neces-
sary) as

B =[B|:B,;}], By eR"" |B||#0, B,eR"™m-m (23)

Partition P conformably,

Py
Pp=|--- 4
P,

Then,
BP=I<=>BIP1+B2P2:I©P1=BIVI—B1_1B2P2 (25)

For any choice of P, P is completely determined.” With the
partitioning given,

P
PB—I:[ l][Ble]—I
p,

_ [{—B,“BZ[PZBI]] [—B;IBZ[PZBZ—I]}] 6
{(P,B,} {P,B,—1I}
Therefore, if
[(P.B)} (PB,~T}]u=0 Q27
then
[[—Bl"BZ[PZBI]][—B{‘BZ[PZBZ—I]}]u
= ~B['B,[(P,B\} {P,B,—1}|u
=0 (28)

For a given P, and B, Eq. (27) compietely defines the null
space R[PB —1I}. We are now ready to answer the questions
posed earlier.

Existence of an Exact Generalized Inverse Solution

Question 1 asks if any P exists that satisfies all points in ®,
but especially in () without violating the control constraints.
That is,

17P|u = Pm*, ucQ, vm* (29)

In Theorem 1 we identified such controls as # ’. By Theorem
1 the controls # ' span R™, so they cannot all liein R [PB —1I].
Therefore, there is no generalized inverse that yields solutions
that are everywhere on the boundary.

Tailoring the Generalized Inverse

There are (m — n)-n arbitrary selections available for speci-
fying the fit of the generalized inverse, and various choices are
available for assigning them. Selection of any two points on an
edge nets the whole edge, three points on a facet nets the whole
facet, and so on. So, for example, a generalized inverse may be
made to fit the boundary in Fig. 2 along the whole of edge
(0-2) [and of edge (5-7) by symmetry]. Although this exacts a
large penalty in the directions of vertices 1 and 6, it does yield
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maximum yawing moment with no rolling moment, which will
lower the minimum controllable airspeed in conditions of large
yawing moments.

The method we will use to specify the points at which the
generalized inverse exactly matches the boundary of attainable
moments is based on Eq. (25), which effectively demonstrates
that a choice of P, completely specifies P. At a particular point
on the boundary of &, both m* and u* are known. Therefore,
we wish to solve for P in the equation Pm* =y *,

Partition u#* conformably with P

*
u
u*={ui}, ut €R™1,  uf eRC-PX1L (30)
2

The order of the problem is reduced, and we need only to solve
for P, in P,m*=u3. In our sample problem, (m —n)-n =2.
For purposes of illustration, we will determine a generalized
inverse that fits exactly at two points in our sample problem:
maximum roll with no yaw and maximum yaw with no roll.
We denote the two points at which the generalized inverse is to
fit as Mt and M. The corresponding controls are denoted U¥
and U3%, partitioned as
Ui=[UT,Ui,1"  and Us =[U3,U3,17

The controls and moments at these points are determined using
the direct method just described.

20 deg
Uf=4 20deg o, Ut ,= {8.76 deg} 3D
8.76 deg
0.0286
MY = { } (32)
0
—20 deg
Ui=1<14.11 deg ;, Uji,={—30deg} (33)
—30 deg
0
5= 34
M: {0.04653 34

P, is a row vector, so we may write
% * T ¥
P2M1=M1TP2=U1,2T

P,M3 = M3TP = U3,T
M) {Uﬁz}T
MiT|"? (U3,
M*T -1 U* )T
Pl=|" . { L’Z} (35)
M3T Us»
We use Eq. (35) to determine P,
pr_|00286 0 "1{8.76} [ 3061
271 0o 0.0465] (-30) | -645.2
We may now use Eq. (25) to get the rest of P:
P1=Bl_1_BlezP2

where

5. _ [ 7:35x107¢ 7.55x 10~ [ -1.35x10-4
T 8.56x1075 5.13x 10747 77 | =1.37x107?

This operation yields

| 696.4 —423.5
P=1]7013 296.9 36)
306.1 —645.2

There will be a third intersection on edge m7s (as well as
m3; by symmetry), and the controls at this intersection will
lie in & [PB —1I] using the just-determined matrix P. We use
Eq. (27) on u’s

u
[0.170 —0.100 -—0.157]¢ —20deg ;=0 37
30 deg

This is solved to yield u; = 15.9 deg. The corresponding mo-
ment at this third intersection is found to be

—7.46%10-?
=1 _5.0x10-2 %)

Figure 4 shows the moment space covered by the generalized
inverse we have determined [Eq. (36)]. The lightly shaded area
is attainable with our generalized inverse, and the darkly
shaded area is not. Clearly, a lot of capability has been given
up to satisfy this specific requirement.
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-0.04 -0.02 0.0 0.02 0.04
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Fig. 4 Solution to the two-point fit problem.
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Fig. 5 Minimum-norm solution.
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Determination of the Best Generalized Inverse

To find the generalized inverse that most closely approxi-
mates the boundary within the constraints, we will formulate
a minimization problem whose solution determines the best
generalized inverse.

We will define the best generalized inverse as that which
maximizes the area or volume of attainable moment space
without violating any control constraints. This is clearly the
same as minimizing the difference between the area or volume
of the boundary and that attainable by the generalized inverse
within the constraints. The geometry of the problem is such
that at each vertex a triangular or pyramidal area is described
by parts of the edges of the boundary and the lines of single
saturated control associated with the generalized inverse solu-
tion. Figure 5, representing the minimum-norm solution, illus-
trates this. The lightly shaded area indicates those moments
obtained by the minimum-norm solution within the con-
straints of the controls. The heavily shaded areas are to be
minimized by the choice of some different generalized inverse.

To minimize the sum of all such areas or volumes, we are
permitted to hypothesize (m —n)-n arbitrary points of inter-
section of the generalized inverse solution (Theorem 2). Based
on this selection, other points of intersection will result (Theo-
rem 3).

For the two-moment problem we use the fact that the area
of the parallelogram is equal to the magnitude of the cross
product of two adjacent vectors defining it, and the area we
wish to minimize is half a parallelogram. We will use this for
our sample problem, but note in passing that the triple scalar
product does the same thing for the pyramidal shapes in three-
moment problems.

Consider an arbitrary vertex my. Hypothesize generalized
inverse intersections at each of the edges from that vertex.
Denote by m/ and my; the vectors from the origin to each of
the intersections. The area we wish to minimize is given by
one-half the magnitude of the cross product of the vectors
{m}—mj) and {m]—m;}. The magnitude of this cross prod-
uct is the product of the magnitudes of the vectors and the sine
of the angle between them. Since the angle between these vec-
tors is fixed at any vertex, we conclude that it is sufficient to
minimize the product of the lengths of the vectors. This is to
be done at each vertex and summed over all of the vertices. For
our sample problem, the geometry associated with this discus-
sion is shown in Fig. 6. The area of the cross product is hatched
vertically, and the area to be minimized (one-half the cross
product area) is cross hatched. It is understood that a similar
area is associated with each of the six vertices.

The parameters available for minimizing this sum of prod-
ucts are the elements of P,, and the constraint is that the con-
trols associated with the generalized inverse solution lie in
K [PB —I1. Rather than adjoin the constraints, we will incor-
porate them into the function to be minimized.

In our example problem, we begin with any vertex, say m§.
On its adjacent edges, hypothesize intersections m{ on the edge
to m? and mJ on the edge to m3. Along each edge, two of the
controls are saturated; associated with m| we have

U1 min
u 1/ =9 U2min (39)
Us

Associated with m,

ui=4 U (40
U3 min
The only other edge (except by symmetry) at which there can

be an intersection is that from m#% to m§. Denote the intersec-
tion along this edge as m3, associated with which we have

3]
Ui= 4 Upmax “n

U3 min

For a given choice of Py, the ‘‘free’’ controls at each inter-
section (i, u, and u3) are determined by the requirement that
the controls at the point selected on each of these three edges
lie in R [PB —1I]. Then each intersection is calculated from
m{ =Bu/. We may then formulate a cost function to be mini-
mized that is a function of P, as follows:

min.J
Py

where

J=|mt—m{| - |m§—mj3| + [mf—m{| - |m}+mj|

% *
+|m3—mj| - |m3—mj]| 42)
U1 min Uy min U1 min
* *® __
m3=B Usmin (» M1 =Bq Uzmin ¢» M2 = B< U3 max
U3 min, U3 max U3 min (43)
U1 min U1 min u;

m{= B¢ usnin ¢ m2,=B Uz s m3I=B U3 max
Us U3 min U3 min

44

[{PZBIJ{PZBZ—I}]m{=0, i=1,2,3 45)
Equation (42) defines the cost function as the product of the
lengths of the vectors along adjacent edges from three of the
six vertices, the other three being symmetric to these. Equation
(43) defines the three vertices appearing in the cost function.
Equations (44) and (45) specify the free controls on each of the
three edges such that they lie in the null space. Each of these
is solved for the appropriate free control on its respective edge.
The components of P, appearing in these equations are the
parameters to be varied in the minimization.

The preceding formulation was applied to the example prob-
lem. Minimization was performed using the IMSL subrou-
tine DUMINF.? The initial guess for P, was the P, of
the minimum-norm solution, namely, [287.3 —723.0]. The
algorithm did converge, but convergence was accompanied by
a warning that the solution may be an approximate local min-
imum. The reason for this may be seen in the results, which
were

699 —68.9
P=]699 -68.9 (46)
305 —-760

u; = +20.0 deg, up= —20.0deg, u;= +27.3deg (47)

,_{-00335) {—0.0258} . {0.0339 @8
mi{= s — , my=
"7 (-0.0494 27 (-0.0291 >~ (0.0531 )
When overlaid on ®, Fig. 7 results. The minimization pro-
cess appears to have ‘‘anchored’ the generalized inverse at
vertices m§ and mT (and at 6 and 7 by symmetry). The value
of u; (27.3 deg) places m4 on the edge m¢;, but note that the
same figure is achieved for any value of u; that places mj; on
that edge. It is believed that there is thus a certain ‘‘flatness’’

to the cost function in the vicinity of the minimum, and the
complaints from DUMINF are to be expected.
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Comparison with Other Methods

Two other methods of control allocation are considered.
These are referred to as ‘‘pseudocontrols’” and ‘‘daisy chain-
ing.”’

Pseudocontrols

In the original formulation of the ‘‘pseudocontrols’” meth-
od,!%!! one postulates pseudocontrols as being pure mode con-
trollers (Dutch roll, roll and spiral modes, for example). This
is accomplished by aligning the effects of the pseudocon-
trols with the eigenvectors associated with the modes. These
pseudocontrols are dereferenced to the actual aerodynamic
and thrust-vectoring controls through an allocation scheme
based on relative effectiveness. In recent applications of this

- method,!? the pseudocontrols are related to stability axis mo-
ment generators rather than mode controllers. Following some
preprocessing (including the removal of inertial coupling
terms), the pseudocontrols are taken to be the required control
moment coefficients. Thus, the method of pseudocontrols
may be identified as a form of dynamic inversion, in which
only the roll and yaw axes are considered.

The subsequent allocation (distribution) of the physical con-
trols according the required pseudocontrols is accomplished
through multiplication by a single control mixing matrix. Since

0.06

6
- l
0.04
(0] e N /
0.02 Nl \"
K\
C, 00 : i m ]
| 'm ’
-0.02 k Jl
-0.04 / " [1]
j_ o
-0.06
-0.04 -0.02 0.0 0.02 0.04
G

Fig. 6 Area to be minimized (similar for each vertex).
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Fig. 7 ‘‘Best”’ generalized inverse.

the pseudocontrols are required moments, the control mixing
matrix is a generalized inverse, and the remarks made earlier
regarding generalized inverse apply to the pseudocontrol
method as well. Maximum attainable moments in arbitrary
directions are not generated by the pseudocontrol method. The
optimality of this method!? lies in the fact that one can com-
mand pure rolling moments or pure yawing moments.

Daisy Chaining

The method of “‘daisy chaining’’ involves the separation of
the available controls into two or more groups. Each group is
complete in the sense that arbitrary combinations of required
moments may be generated by each group. In responding to
demands for control generated moments, a particular group is
applied while the others are held constant. As any of the con-
trols in the group being applied reaches saturation, that group
is held in its last position and another group is brought online
to continue generating required moments.

The method has been applied to a dynamic inversion HARV
control allocation problem.!* Two groups of controls were
selected: three aerodynamic controls u#; and three thrust-vec-
toring controls u#,. With three moments to be generated, the
control effectiveness matrix is partitioned into two 3 X 3 ma-
trices, B; and B,

u
Bu = [B, le{u‘} = Biu;, + Bauts (49)
2

For a given moment to be generated, the aerodynamic con-
trols are first used to the point of saturation, then thrust-vec-
toring controls are brought to bear. That is, while none of the
aerodynamic controls are saturated,

u, =B1_1md ll2:0 (50)
When any of the aerodynamic controls are saturated,

Uy = Uy(sar uy= B{I[md —Bu, (sat)] (&2))
Since in this application B, and B, are square and assumed
invertible, their inverses are unique, and the solutions obtained
are unique for the particular control groupings chosen. Other
combinations of controls are possible, of course, so the solu-
tions obtained from daisy chaining are not unique in the same
sense that those on the boundary of the attainable moment set
are. In general, daisy chaining will yield maximum attainable
moments in only a very limited number of directions in mo-
ment space.

With respect to generating maximum attainable moments,
daisy chaining may be compared to the use of generalized
inverses. Limiting solutions afforded by generalized inverses
are generally characterized by a single controller reaching sat-
uration, whereas daisy chaining guarantees that more than one
(one each from the control groupings) will be saturated. How-
ever, this does not necessarily mean that daisy chaining yields
limiting solutions that are more nearly on the boundary of the
attainable moment set than generalized inverses. The superior-
ity of one method over the other in this regard is determined
by many factors and will vary according to the direction in
moment space being considered.

A disadvantage of daisy chaining arises in consideration of
control deflection rates. Cooperative control efforts are those
in which all available controls are simultaneously varied to
meet a time-varying demand. The total rate of change of the
moment produced is a linear combination of the individual
control rates. For a given rate of change of the required mo-
ment, in magnitude and/or direction, a cooperative effort
among all available controls will require lower individual con-
trol rates than will a noncooperative effort. Daisy chaining is
a noncooperative allocation scheme and potentially will com-
mand unattainable deflection rates that would not be com-
manded by cooperative control allocation methods.
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Conclusions

The geometry of constrained control problems is straight-
forward, requiring only basic linear algebra concepts and a
means to determine the bounding surface of the attainable
moment space. Determination of this bounding surface is the
most difficult part of the process. There are existing methods
for determining the boundary. Other methods that exploit the
structure of the constrained control allocation problem, and
that apply to many controls and three moments, are the sub-
ject of ongoing research.

The unraveling of the problem to determine the controls that
generate a particular moment on the surface of the attainable
moment subset is also easy, once the applicable part of the
bounding surface is identified. The method of finding the
applicable edge described herein, that of using the angles sub-
tended by bounding edges, works well for two-moment prob-
lems. For three-moment problems, more ingenuity is required.
A simple dynamic inversion control law using three-moment
control allocation with 11 controls is currently being tested as
part of research in this area.

The direct determination of constrained controls is com-
putationally more complicated than other control allocation
methods. It offers advantages that may outweigh this addi-
tional complexity in certain applications: First, the direct
method is guaranteed to yield the maximum attainable mo-
ments. The amount of extra capability that it offers is applica-
tion specific, and no generalizations are possible. Second, the
direct method is a fully cooperative allocation scheme and does
not suffer from unnecessary rate limiting.

This paper has presented several tools for the design of flight
control systems. First, one may determine and graphically
evaluate the maximum capabilities of a particular control con-
figuration by plotting the attainable moment subset. Such an
evaluation may be used to determine whether additional con-
trol capabilities are required, or whether existing controls offer
little additional capability and may be eliminated. It is also
useful for direct comparison of the maximum capabilities of
two different control configurations. Second, simple alloca-
tion schemes using generalized inverses may be directly de-
signed using either a tailored inverse or the ‘‘best’’ inverse.
Finally, given a particular control configuration, one may
evaluate many potential control allocation schemes with re-
spect to the maximum capabilities. This will enable the de-

signer to decide whether it is necessary to use a complex alllo-
cation scheme, or if a simpler scheme will suffice.
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